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Abstract. The electronic smclure of a ZD gas subjected Io a tilted magnetic field, with 
a strong component parallel to lhe GaAs/AIGaAs interface and a weak wmponent oriented 
perpendicularly. is studied theoretically. It is shown Ulat the parallel field component modifies 
the originally circular shape of a Fermi wntouI while the perpendicular component drives 
an electron by the Lorentz force along a Fermi line with a cyclotron fkquency given by its 
shapz. The corresponding cyclouon effective mass is calculated selfconsistently for several 
concentrations of ZD -en as a function of the in-plane magnetic field. The possibility of 
detecting its field-induced &vialions from the zero-field value experimentally is discussed. 

1. Introduction 

The energy level sbucture of quasi-two-dimensional systems in magnetic fields tilted with 
respect to the sample plane have attracted auention for many years. As shown by Maan [ I ]  
and Merlin [Z] the electron spectra can be found analytically for the special case of parabolic 
quantum wells. This simple analytically solvable model is very useful when discussing the 
qualitative aspects of 2D electron physics in quantum wells, but when the semiquantitative 
comparison of results with experimental data is the goal of investigation, more realistic 
models must be used and numerical methods of calculation employed. 

The widely accepted approach to the electronic structure of realistic quantum wells in 
tilted magnetic fields, which relies on perturbation theory, was reviewed by Bastard [31. 
It can be outlined as follows. The Hamiltonian is decomposed into three parts, H = 
Hn + HL Hint. The first part Hll describes the motion of an electron in the z direction 
under the combined influence of the confining potential and the in-plane component of 
the magnetic field. If the in-plane field is not too strong its effect is usually included via 
perturbation theory. The second part of the Hamiltonian HL corresponds to the standard 
ZD gas subjected to the perpendicular component of the field and can be diagonalized 
analytically. In most situations the third coupling term H a  can be completely neglected or 
treated as a small perturbation. Only in certain special cases, for example when crossing of 
Landau levels from different subbands is important, the mahix elements of a coupling term 
must be evaluated and the Hamiltonian H diagonalized numerically [4]. 

In this paper we present a slightly different approach to the electron structure of quantum 
wells in tilted magnetic fields which is appropriate when the perpendicular component of 
the applied magnetic field is weak. Assuming for a moment B (0, B y ,  0), i.e. the field 
is exactly parallel to the plane of the 2D electron gas, the Hamiltonian Ho of an electron 
confined to the x-y plane by a potential Vm&) can be written as 

HII = - ( P ~  - eB+) + -pY + z;;;~. + Vm&). 2m 2m (1) 
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Its energy spectrum is formed by subbands, momentum operators pr and p ,  commute with 
HI, and the eigenenergies E&, k,), n = 0, I , .  . . are functions of the quasi-continuous 
wavevectors kx and k,. The 2D Fermi surfaces, or more accurately the Fermi contours, are 
then defined separately for each subband by the equation EF = E&, k,). 

The in-plane magnetic field E ,  does not influence the electron motion in the y-direction 
while the electrons moving in the x-direction are decelerated or accelerated by the combined 
effect of the crossed fields E ,  and E, = -dVm(z)/dz, depending on the form of Vm.&). 
Consequently, it is expected that the subband separation, the 2D density of states and the 
shape of the Fermi contour will vary with increasing E ,  [3]. Only recently have realistic 
self-consistent calculations of electron energy spectra in heterosbuctures subjected to parallel 
magnetic fields been performed [5,6], enabling a quantitative estimate of these quantities. 

Let the weak perpendicular component Er of the magnetic field be added to the strong 
in-plane field component By.  Then the electron dynamics in the x-y plane can be described 
semiclassically, in a similarly way to the dynamics of electrons in metals with non-spherical 
Fermi surfaces. The corresponding quasi-classical theory was originally developed by 
Onsager [7] and Lifshitz [8]; now it is a part of standard textbooks devoted to solid state 
physics (see, for example, [9]). According to this theory electrons move in the k space 
along trajectories defined by intersections of a Fermi surface and planes perpendicular to 
the applied magnetic field. In the ZD case there is only one such line, identical to the Fermi 
line itself. Once the k-space orbit is known, semiclassical theory predicts that the electron 
real space trajectory is of an identical shape except for the scale factorh/lelE,, and rotation 
by r / Z .  The anisotropy of the Fermi contour due to the strong parallel field thus leads to 
the deviation of the electron trajectory from the originally circular form. 

The modification of the Fermi contour shape by the in-plane magnetic field should 
manifest itself through the field dependence of the cyclotron effective mass m,. This 
important characteristic of electron energy spectra is related to the Fermi area SF surrounded 
by the Fermi contour by the semiclassical expression 
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TI’ dSF 
2 r  dE 

m, - _. 
Note that the field dependence of m, is determined by the combined influence of the in-plane 
component of the magnetic field and of the shape of the confining potential Vm&) of the 
quantum well and, therefore, the different structures with different quantum wells can be 
distinguished by measuring this quantity. 

Two methods are widely used to determine the cyclotron effective mass of ZD electrons 
confined to the GaAsIAlGaAs interface: the cyclotron resonance in the infrared region of 
optical spectra [IO] and the temperature damping of Shubnikov-de Haas oscillations [Ill.  
To gain insight into the feasibility of such experiments, we report in this paper the results 
of self-consistent calculations of the field dependence of the cyclomn effective mass in the 
electron layer confined to the interface of the standard GaAsIAIGaAs heteroshucture for 
several concentrations of 2D carriers. 

2. Electronic structure in tilted magnetic fields 

As mentioned above, non-interacting electrons mobile in the x-y plane and confined by the 
potential Van&) in the z direction are considered. A tilted magnetic field B = (0, E,, Er)  
-is applied to the system. The corresponding one-electron Hamiltonian is 
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where e and m are the electron charge and effective mass, respectively. We choose the 
vector potential A to be of the form A = ( - B , y  + Byz,  0,O) which can be split into a sum 
A = As + A! of vector potentials AL = ( -&y,  0,O) and All = (Byz, 0.0) describing 
the perpendicular and parallel components of the magnetic field, respectively. 

To bring the above Hamiltonian to a form similar to (1) we introduce new canonical 
momenta by 

nx = pr - e A b  = px - mw,y 

ny = pY - e h y  = pY 
(4) 

where w, denotes IelBJm. These momenta correspond to the in-plane electron motion, and 
the perpendicular component of the magnetic field E, enters the Hamiltonian exclusively 
through them. 

While quantum mechanics must be used to obtain the correct picture of electron motion 
in the z direction, both quantum mechanical and classical descriptions are acceptable for the 
in-plane motion when the perpendicular component of the magnetic field B, is weak. The 
reason is that the weak perpendicular component yields many occupied Landau levels below 
the Fermi energy. The Landau levels near the Fermi energy are represented by states with 
high quantum numbers and, as is well known, they can be treated quasi-classically as well 
as quantum mechanically. Therefore, in the first step of our approximate description, the 
in-plane canonical variables and momenta (including the part A1 of the vector potential) 
will be considered as classical variables which commute with the Hamiltonian and enter it as 
c-numbers. Introducing further the components of the wavevector, k, and k y ,  by H, = hk, 
and n, = hk,, respectively, we obtained a one-dimensional Hamiltonian identical to (1). 

Again, the energy spectrum of this Hamiltonian is formed by subban& and the 
eigenenergies E.(k,,k,) are continuous functions of the wavevectors k, and k y  or, 
equivalently, of the in-plane canonical momenta n, and ny. Since the perpendicular 
component of the magnetic field is hidden in the wavevector component kI ,  the Hamiltonian 
describes the 2D system subjected only to the parallel field B = (0, By,  0). The shape of 
subban& is determined by both the confining potential and the in-plane magnetic field and 
can be accurately obtained by a self-consistent numerical calculation. 

In the second step of our approximate tmtment the single-subband effective Hamiltonian 
Hem for the in-plane electron motion is constructed from a subband energy E,(k,, k,) by 
the backward substitution kx + n, /h ,  k ,  + nyp. We get 

and this effective Hamiltonian will be used to describe. the electron motion in the x-y plane 
by standard Hamilton equations 

i = aHem/apX 
p x  = -aHemjax 

j = aH,,japY 
zy = -aHeR/ay. 

The time derivatives of coordinates define the velocity components U, = i, uy = j and 
yield the expressions 

1 aE" 1 aE" 
7j  U ---.  - h ak, - fr ak, 



These are the classical equations of motion for an electron subjected to the Lorentz force 
e (v x B), B = (O,O, &). Their solutions are. in the form of orbits of all energies: 
among them, the orbit corresponding to the Fermi energy is the most important. A simple 
geometrical analysis allows us to derive the following properties of orbits. 

As already mentioned, an electron is driven by the Lorenh force around the Fermi 
contour in the k plane. In the x-y plane, it executes an orbit similar in shape but scaled in 
dimensions by h/lelBz and tumed through ~ / 2 .  It has also a z component of motion which 
will be discussed later. 

The period T of the cyclotron motion, or equivalently the cyclotron frequency w,, are 
obtained from (6) and (7) by direct integration. Since the magnitude of these parameters 
depends linearly on the amplitude of the perpendicular field component, it is more convenient 
to characterize the orbits by the cyclotron effective mass m, defined with a help of the 
equation w, = (e (E, /m, .  The explicit expression relating m, to the shape of the Fermi 
contour is 

where dk denotes an element of a length of the Fermi line. More often, the equivalent 
expression (2) is used. 

It is well known that, unlike in the 3D case, the area SF surrounded by the k-space orbit 
in 2D systems is identical to the Fermi area, which is determined by the concentration Ne 
of free carriers. Since the density of states g is related to the concentration by g = dN,/dE 
we can write 

2 dSp 
g =  - - 

( 2 ~ ) ~  dE 
2 

Ne = - 
( 2 R ) Z  SF 

where spin degeneracy is included. Making use of these expressions and of equation (2) a 
simple relation between the density of states and the cyclotron mass is obtain& 

mE g=- 
nh2’ 

Quantization of the in-plane electron motion by E, can be taken into account using the 
Bohr-Sommerfeld quasi-classical quantization rules which state that each quantized real- 
space trajectory encloses an integer number of flux quanta h/lel .  This procedure yields 
a discrete specmm of Landau levels and the density of states becomes a series of delta 
functions separated by hoc .  Note that the filling factor of each level is ZlelEJh, i.e. 
independent of the cyclotron mass and the same as in the case of an exactly perpendicular 
magnetic field. 

To estimate the validity of our approximate treatment of the electron spectra we consider 
a model in which a 20 system is confined to the x-y plane by a harmonic potential 
V d ( z )  = m Q2z2/2. In this special case the eigenenergies can be found in an analytic 
form both for in-plane and tilted magnetic fields [I]. Assuming first B, = 0, as before., we 
can write 

h2k: h2k: 
E.(k,, k,) = hZ(n + f )  + I + - 2m 2m 

n =0, 1,. .. 
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where. 0" = (0; + R2)1/2, oy = lelBy/m and E = mZ2/Rz. 
The magnetic-field-induced anisotropy is described by the new effective mass E for the 

x component of the electron motion, which grows with By. The Fermi contour is distorted 
from a circular shape to an elliptical shape. The zero-field Fermi radius b p  is determined 
by EOF = fi2kiF/2m where EOF is the zero-field Fermi energy. Taking into account the 
changes in the energy spectrum and the Fermi energy due to the in-plane magnetic field, 
the equation EF = E.(k,, k y )  for a determination of the Fermi contour can be rewritten in 
the form 

From this equation the cyclotron effective mass can be evaluated using (8). and we get 

m, = G. (13) 

The corresponding cyclotron frequency can be written as 0, = Qol/Z. 

parabolic quantum well subjected to tilted magnetic fields: 
These approximate results should be compared with the exact solutions obtained for a 

04 .2  = $rr0; + + R)21'fl r0; + (OJz - R)21'/21. (14) 

It is easy to show that the lowest-order expansion of these expressions with respect to w, 
yields exactly the results obtained by our approximate method 

(1.5) 
- y =0. 

52 
0 1  = :: 0, 

0 

Both exact and approximate solutions are shown in figure 1. 

3. Self-consistent calculations 

The standard semiempirical model working quantitatively for the lowest conduction states 
of GaAs/AIWs heterosmctures is used to solve the Schmdmger equation in the envelope- 
function approximation. The envelope function is assumed to be built from host quantum 
states belonging to a single parabolic band. Since the effect of the effective mass mismatch 
is completely neglected, and the envelope functions of GaAs and AlGaAs are smoothly 
matched at the interface. the Schrodinger equation has a form given by ( I ) .  

The confining potential 

Vm&) = vb(z)  + vsc(z) (16) 

is the sum of the step function V&) = Vbe(-z) corresponding to the conduction band 
discontinuity between AlGaAs and GaAs and of a term describing the interaction of an 
electron with ions and the electron4ectron interaction. This term should be calculated 
self-consistently, and can be written as 

VS&) = V H ( d  + V&). (17) 
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0.5 ........................................... ................ ......... 

0.0 I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
lelB/mR 

Flgure 1. Eigenfrequencies of a parabolic quantum well subjected 10 a tilled ma@c field, 
9 = 60”. Domed curfes denote the exact solution, full curves the approximate one. 

The Harrree term V, is determined from the Poisson equation 

and we use an expression calculated by Ruden and DGhler [121 in a density-functional 
formalism for the exchange correlation term Vxc: 

The conduction band offset V b  and the dielectric constant E enter our calculations as input 
parameters. 

For modulation-doped GaAs/AIGaAs hetemstructures the total charge density g(z) in 
(18) can be split into parts corresponding to concentrations of electrons, N&), their parent 
donors in AIGaAs, Nd+(z),  and ionized residual acceptors in GaAs, N J z ) :  

P ( Z )  =e[N&) - N,+(z) + N;(Z)l. (20) 
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We accept the usual approximation of constant-impurity concentrations and assume donors 
and acceptors to be ionized within certain finite intervals Id and la: Nd+(z) = Nd for 
-Id - w < z < -tu and N;(z) = N ,  for 0 < z < I,, where (U is the spacer layer thickness. 

In our calculation, we consider a GaAsJAIGaAs heterosmcture with parameters Nd = 
2 x IO'* N, = 10'4cm-3, the band offset vb = 225meV and the dielectric constant 
E = 12.9. Three selected values of the spacer layer thickness w~ = 40nm. w2 = 20nm 
and w3 = lOnm yield electron systems with three different concentrations of electrons: 
Ne, % 1.8 x 10" N e  m 3.4 x 10" cm-* and Ne3 c* 5.4 x 10" cm-', respectively. 
All these systems have only one occupied subband. The parameters 1, and 4 are determined 
in the course of the self-consistency procedure. For more details, see 161. 

(4 (b) 
B=O T B=5 T 

............. 
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. I  

.. i 
". \ , ,,,. 
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Figure 2. Self-mnsislently calarlated Fermi lines 
corresponding to elechon " m a t i a n s  N,I FJ 1.8 x 
101"r2, No* FJ 3.4 x 10I1cm-l and NG = 5.4 x 
I O L 1  cm-2 for (a) B = OT, (b)  B = 5T and (c) B = IOT. 

The 'egg-Like' Fermi contours calculated for the above three concentration and several 
magnitudes of the in-plane magnetic fields are shown in figure 2. The real-space trajectories 
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have similar shapes. Let us note that, since the average value of the out-of-plane coordinate 
of an electron (z)k is a function of kx,  i.e. the position on the Fermi contour, the resulting 
trajectoly does not lie exactly in the x - y plane but is slightly tilted. It is elongated in the 
y direction and an electron is close to the interface at the wide end of the trajectory and in 
the bulk at its narrow end. A sckmatics of a classical real-space trajectory illustrating this 
behaviour is shown, together with its projection to the x-y plane, in figure 3. 
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Figure 3. Schematics of a classical real-space mjecmry of an electron in an electric and a tilled 
magnetic field (thick curve) and its projection onto the x-y plane (Win curve). 

The field dependence of the cyclotron effective mass resulting from the self-consistent 
calculations is presented in figure 4. For all three electron concentrations the deviations of 
the cyclotron effective mass reach almost 25% of its zero-field value in a magnetic field 
B, = IOT. 

4. Discussion and summary 

The electronic structure of a 2~ electron gas in GaAsIAIGaAs heteroshucture subjected to a 
tilted magnetic field has been studied theoretically. We combine (i) self-consistent quantum 
mechanical calculations of the electron subbands of the ZII electron system in the. presence 
of a parallel magnetic field and (ii) the subsequent quasi-classical description of the in-plane 
electron motion under the influence of the perpendicular magnetic field component. 

The parallel magnetic field combined with the confining effect of the quantum well is 
the reason for deviations of the Fermi contour from a circular shape. Note that in this case 
the nature of the changes is different than in case of a standard modification of the Fermi 
line due to a periodic potential. Here, the time-reversal symmetry is broken by the magnetic 
field and, consequently, the Fermi contour has no inversion symmetry in k space, if the 
quantum well is asymmetric. 

The quasi-classical quantization of the in-plane electron motion yields eigenenergies 
linear in the perpendicular component of the magnetic field. The method is applicable if the 
energy separation of subbands is larger than the separation of the Landau levels. It does not 



In-plane magnetic-field-dependent cyclotron mass 63 
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Fiere 4. Self-consistently calculated in-plane magnetic-field dependence of the relative 
cyclotron mass carresponding to electron concenharions Ne! FJ 1.8 x 10"cm-*. Nc2 FJ 
3.4 x 10" cm-' and N.3 FJ 5.4 x 10" cm-'. 

necessarily mean that the parallel magnetic field component must be always greater than 
the perpendicular one, but the in-plane field increases the subband separation. 

The deviations of eigenenergies from a linear dependence for higher perpendicular 
magnetic fields are attributed to the fact that the real-space trajectories do not lie exactly 
in the x-y plane, as already mentioned in previous sections. In this case the quantization 
rules should not only take into account the perpendicular component of the magnetic field 
and the area surrounded by the projection of a trajectory to the x-y plane, but also the full 
field and the area of the trajectory itself. 

The in-plane magnetic-field dependencies of the cyclotron mass were calculated in the 
limit of an infinitesimally small perpendicular component of the magnetic field. The changes 
in the cyclotron mass are surprisingly large and, to OUT knowledge, fully measurable by 
present experimental techniques. 
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